Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
1.
Neuropsychiatr Dis Treat ; 20: 979-987, 2024.
Article in English | MEDLINE | ID: mdl-38741580

ABSTRACT

Background: Postoperative delirium (POD) significantly impacts patient outcomes after acute type A aortic dissection (ATAAD) surgeries. This study investigates the role of Neuronal Pentraxin 2 (NPTX2) as a potential biomarker for POD in ATAAD patients. Methods: This secondary analysis involved ATAAD patients from a prospective observational study. Serum NPTX2 levels were measured preoperatively and immediately postoperatively using Enzyme-Linked Immunosorbent Assay (ELISA). Delirium was assessed using the Confusion Assessment Method (CAM) or CAM for the ICU (CAM-ICU). Statistical analyses included the Pearson Correlation Coefficient and multivariate logistic regression to evaluate the association between NPTX2 levels and POD. Results: Among the 62 patients included, 46.77% developed POD. Patients with POD had significantly lower preoperative and postoperative serum NPTX2 levels. The Receiver Operating Characteristic (ROC) curve analysis showed that postoperative NPTX2 had a strong predictive capability for POD (AUC = 0.895). The optimal cutoff for postoperative NPTX2 in predicting POD was less than 421.4 pg/mL. Preoperative NPTX2 also demonstrated predictive value, albeit weaker (AUC = 0.683). Conclusion: Serum NPTX2 levels, both preoperatively and postoperatively, are promising biomarkers for predicting POD in ATAAD patients. These findings suggest that NPTX2 could be instrumental in early POD detection and intervention strategies.

2.
Front Cardiovasc Med ; 11: 1364332, 2024.
Article in English | MEDLINE | ID: mdl-38707890

ABSTRACT

Background: Postoperative acute kidney injury (PO-AKI) is a prevalent complication among patients with acute type A aortic dissection (aTAAD) for which unrecognized trajectories of renal function recovery, and their heterogeneity, may underpin poor success in identifying effective therapies. Methods: This was a retrospective, single-center cohort study in a regional Great Vessel Center including patients undergoing aortic dissection surgery. Estimated glomerular filtration rate (eGFR) recovery trajectories of PO-AKI were defined through the unsupervised latent class mixture modeling (LCMM), with an assessment of patient and procedural characteristics, complications, and early-term survival. Internal validation was performed by resampling. Results: A total of 1,295 aTAAD patients underwent surgery and 645 (49.8%) developed PO-AKI. Among the PO-AKI cohort, the LCMM identified two distinct eGFR trajectories: early recovery (ER-AKI, 51.8% of patients) and late or no recovery (LNR-AKI, 48.2% of patients). Binary logistic regression identified five critical determinants regarding poor renal recovery, including chronic kidney disease (CKD) history, renal hypoperfusion, circulation arrest time, intraoperative urine, and myoglobin. LNR-AKI was associated with increased mortality, continuous renal replacement therapies, mechanical ventilation, ICU stay, and hospital stay. The assessment of the predictive model was good, with an area under the curve (AUC) of 0.73 (95% CI: 0.69-0.76), sensitivity of 61.74%, and specificity of 75.15%. The internal validation derived a consistent average AUC of 0.73. The nomogram was constructed for clinicians' convenience. Conclusion: Our study explored the PO-AKI recovery patterns among surgical aTAAD patients and identified critical determinants that help to predict individuals at risk of poor recovery of renal function.

3.
Front Immunol ; 15: 1368904, 2024.
Article in English | MEDLINE | ID: mdl-38629070

ABSTRACT

Background: Coronary artery disease (CAD) is still a lethal disease worldwide. This study aims to identify clinically relevant diagnostic biomarker in CAD and explore the potential medications on CAD. Methods: GSE42148, GSE180081, and GSE12288 were downloaded as the training and validation cohorts to identify the candidate genes by constructing the weighted gene co-expression network analysis. Functional enrichment analysis was utilized to determine the functional roles of these genes. Machine learning algorithms determined the candidate biomarkers. Hub genes were then selected and validated by nomogram and the receiver operating curve. Using CIBERSORTx, the hub genes were further discovered in relation to immune cell infiltrability, and molecules associated with immune active families were analyzed by correlation analysis. Drug screening and molecular docking were used to determine medications that target the four genes. Results: There were 191 and 230 key genes respectively identified by the weighted gene co-expression network analysis in two modules. A total of 421 key genes found enriched pathways by functional enrichment analysis. Candidate immune-related genes were then screened and identified by the random forest model and the eXtreme Gradient Boosting algorithm. Finally, four hub genes, namely, CSF3R, EED, HSPA1B, and IL17RA, were obtained and used to establish the nomogram model. The receiver operating curve, the area under curve, and the calibration curve were all used to validate the accuracy and usefulness of the diagnostic model. Immune cell infiltrating was examined, and CAD patients were then divided into high- and low-expression groups for further gene set enrichment analysis. Through targeting the hub genes, we also found potential drugs for anti-CAD treatment by using the molecular docking method. Conclusions: CSF3R, EED, HSPA1B, and IL17RA are potential diagnostic biomarkers for CAD. CAD pathogenesis is greatly influenced by patterns of immune cell infiltration. Promising drugs offers new prospects for the development of CAD therapy.


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/diagnosis , Coronary Artery Disease/genetics , Molecular Docking Simulation , Nomograms , Algorithms , Machine Learning
4.
J Geriatr Cardiol ; 21(3): 359-368, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38665282

ABSTRACT

OBJECTIVES: Misdiagnosis of acute aortic syndrome (AAS) significantly increases mortality. Tenascin-C (TN-C) is an extracellular matrix glycoprotein related to cardiovascular injury. The elevation of TN-C in AAS and whether it can discriminate sudden-onset of acute chest pain in Chinese remains unclear. METHODS: We measured the plasma concentration of TN-C by ELISA in a cohort of 376 patients with chest or back pain. Measures to discriminate AAS from acute coronary syndrome (ACS) were compared and calculated. RESULTS: From October 2016 to September 2021, 376 undiagnosed patients with chest or back pain were enrolled. 166 of them were finally diagnosed as AAS, 100 were ACS and 110 without cardiovascular diseases (NCV). TN-C was significantly elevated in AAS at 18.18 ng/mL (IQR: 13.10-27.68) compared with 7.51 ng/mL (IQR: 5.67-11.38) in ACS (P < 0.001) and 3.68 ng/mL (IQR: 2.50-5.29) in NCV (P < 0.001). There was no significant difference in TN-C level among the subtypes of AAS. Of the 166 AAS patients, the peaked level of TN-C was at acute stage (P = 0.012), then a slight of decrease was observed at subacute stage. The area under receiver operating characteristic curve for AAS patients versus NCV was 0.979 (95% CI: 0.964-0.994) for TN-C. At a cutoff level of 11.474 ng/mL, TN-C has a sensitivity of 76.0%, specificity of 85.5%, accuracy of 82.0%, positive predictive value (PPV) of 76.0%, negative predictive value (NPV) of 85.5%. Diagnostic performance of TN-C was superior to D-dimer and hs-cTnT. CONCLUSIONS: The concentration of serum TN-C in AAS patients was significantly higher than that in ACS patients and NCV. TN-C could be a new biomarker to distinguish AAS patients in the early stage after symptoms onset from other pain diseases.

5.
Front Genet ; 15: 1361445, 2024.
Article in English | MEDLINE | ID: mdl-38660678

ABSTRACT

Introduction: Peripheral vascular atherosclerosis (PVA) is a chronic inflammatory disease characterized by lipid accumulation in blood vessel walls, leading to vessel narrowing and inadequate blood supply. However, the molecular mechanisms underlying PVA remain poorly understood. In this study, we employed a combination of Mendelian randomization (MR) analysis and integrated transcriptomics to identify the critical gene signature associated with PVA. Methods: This study utilized three public datasets (GSE43292, GSE100927 and GSE28829) related to peripheral vascular atherosclerosis obtained from the Gene Expression Omnibus database. Instrumental variables (IVs) were identified through expression quantitative trait loci (eQTL) analysis, and two-sample MR analysis was performed using publicly available summary statistics. Disease critical genes were identified based on odds ratios and intersected with differentially expressed genes in the disease dataset. GSE28829 dataset was used to validate the screened disease critical genes. Functional enrichment analysis, GSEA analysis, and immune cell infiltration analysis were performed to further characterize the role of these genes in peripheral vascular atherosclerosis. Results: A total of 26,152 gene-related SNPs were identified as IVs, and 242 disease-associated genes were identified through MR analysis. Ten disease critical genes (ARHGAP25, HCLS1, HVCN1, RBM47, LILRB1, PLAU, IFI44L, IL1B, IFI6, and CFL2) were significantly associated with peripheral vascular atherosclerosis. Functional enrichment analysis using KEGG pathways revealed enrichment in the NF-kappa B signaling pathway and osteoclast differentiation. Gene set enrichment analysis further demonstrated functional enrichment of these genes in processes related to vascular functions and immune system activation. Additionally, immune cell infiltration analysis showed differential ratios of B cells and mast cells between the disease and control groups. The correlations analysis highlights the intricate interplay between disease critical genes and immune cells associated with PVA. Conclusion: In conclusion, this study provides new insights into the molecular mechanisms underlying PVA by identifying ten disease critical genes associated with the disease. These findings, supported by differential expression, functional enrichment, and immune system involvement, emphasize the role of these genes in vascular function and immune cell interactions in the context of PVA. These findings contribute to a better understanding of PVA pathogenesis and offer potential targets for further mechanistic exploration and therapeutic interventions.

6.
J Cardiothorac Surg ; 19(1): 171, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566106

ABSTRACT

BACKGROUND: Acute Type A aortic dissection (ATAAD) is a life-threatening cardiovascular disease associated with high mortality rates, where surgical intervention remains the primary life-saving treatment. However, the mortality rate for ATAAD operations continues to be alarmingly high. To address this critical issue, our study aimed to assess the correlation between preoperative laboratory examination, clinical imaging data, and postoperative mortality in ATAAD patients. Additionally, we sought to establish a reliable prediction model for evaluating the risk of postoperative death. METHODS: In this study, a total of 384 patients with acute type A aortic dissection (ATAAD) who were admitted to the emergency department for surgical treatment were included. Based on preoperative laboratory examination and clinical imaging data of ATAAD patients, logistic analysis was used to obtain independent risk factors for postoperative in-hospital death. The survival prediction model was based on cox regression analysis and displayed as a nomogram. RESULTS: Logistic analysis identified several independent risk factors for postoperative in-hospital death, including Marfan syndrome, previous cardiac surgery history, previous renal dialysis history, direct bilirubin, serum phosphorus, D-dimer, white blood cell, multiple aortic ruptures and age. A survival prediction model based on cox regression analysis was established and presented as a nomogram. The model exhibited good discrimination and significantly improved the prediction of death risk in ATAAD patients. CONCLUSIONS: In this study, we developed a novel survival prediction model for acute type A aortic dissection based on preoperative clinical features. The model demonstrated good discriminatory power and improved accuracy in predicting the risk of death in ATAAD patients undergoing open surgery.


Subject(s)
Aortic Dissection , Marfan Syndrome , Humans , Hospital Mortality , Retrospective Studies , Aortic Dissection/surgery , Risk Factors
7.
Trials ; 25(1): 250, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600561

ABSTRACT

BACKGROUND: Acute type A aortic dissection (aTAAD) is a critical and life-threatening condition. Previous research has demonstrated that the use of ketorolac not only reduces the progression, incidence, and severity of aortic aneurysms in animal models, but also decreases postoperative mortality and complications in patients undergoing open abdominal aortic aneurysm replacement. However, there is a lack of studies investigating the efficacy of ketorolac in treating aTAAD in humans. Therefore, we conducted a study to evaluate the safety and efficacy of ketorolac in patients with aTAAD. Our hypothesis was that ketorolac treatment for aTAAD patients would meet safety indicators and effectively improve patient prognosis. METHODS/DESIGN: This study is a single-center, randomized, double-blinded, and placebo-controlled study. A total of 120 patients with aTAAD will be recruited and will be randomized into the ketorolac group and placebo group with a ratio of 1:1. Ketorolac tromethamine 60 mg per 2 ml will be intramuscularly injected within 2 h before surgery, followed by intramuscular injections of 30 mg per 1 ml BID. on the first and second postoperative days in the Ketorolac group, while 0.9% saline will be administered at the same dose, dosage form, and time in the placebo group. This study aims to evaluate the safety and efficacy of ketorolac in improving the prognosis of aTAAD. The primary endpoint is the composite endpoint event concerning drug-related adverse events. Secondary endpoints include drug-related adverse events, laboratory examination of blood, diagnostic imaging tests, clinical biomarkers, etc. DISCUSSION: This study has been approved by the Medical Ethics Committee of Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical College (approval number: 2023-197-02). This study is designed to evaluate the safety and efficacy of ketorolac in patients with aTAAD. All participating patients will sign an informed consent form, and the trial results will be published in international peer-reviewed journals. TRIAL REGISTRATION: The Chinese Clinical Trial Registry ( http://www.chictr.org.cn ) ChiCTR2300074394. Registered on 4 October 2023.


Subject(s)
Aortic Dissection , COVID-19 , Humans , SARS-CoV-2 , Ketorolac/adverse effects , Prognosis , Aortic Dissection/diagnostic imaging , Aortic Dissection/drug therapy , Aortic Dissection/surgery , Treatment Outcome , Randomized Controlled Trials as Topic
8.
Sci Rep ; 14(1): 7845, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570622

ABSTRACT

Temporary neurological dysfunction (TND), a common complication following surgical repair of Type A Aortic Dissection (TAAD), is closely associated with increased mortality and long-term cognitive impairment. Currently, effective treatment options for TND remain elusive. Therefore, we sought to investigate the potential of postoperative relative band power (RBP) in predicting the occurrence of postoperative TND, with the aim of identifying high-risk patients prior to the onset of TND. We conducted a prospective observational study between February and December 2022, involving 165 patients who underwent surgical repair for TAAD at our institution. Bedside Quantitative electroencephalography (QEEG) was utilized to monitor the post-operative brain electrical activity of each participant, recording changes in RBP (RBP Delta, RBP Theta, RBP Beta and RBP Alpha), and analyzing their correlation with TND. Univariate and multivariate analyses were employed to identify independent risk factors for TND. Subsequently, line graphs were generated to estimate the incidence of TND. The primary outcome of interest was the development of TND, while secondary outcomes included intensive care unit (ICU) admission and length of hospital stay. A total of 165 patients were included in the study, among whom 68 (41.2%) experienced TND. To further investigate the independent risk factors for postoperative TND, we conducted both univariate and multivariate logistic regression analyses on all variables. In the univariate regression analysis, we identified age (Odds Ratio [OR], 1.025; 95% CI, 1.002-1.049), age ≥ 60 years (OR, 2.588; 95% CI, 1.250-5.475), hemopericardium (OR, 2.767; 95% CI, 1.150-7.009), cardiopulmonary bypass (CPB) (OR, 1.007; 95% CI, 1.001-1.014), RBP Delta (OR, 1.047; 95% CI, 1.020-1.077), RBP Alpha (OR, 0.853; 95% CI, 0.794-0.907), and Beta (OR, 0.755; 95% CI, 0.649-0.855) as independent risk factors for postoperative TND. Further multivariate regression analyses, we discovered that CPB time ≥ 180 min (OR, 1.021; 95% CI, 1.011-1.032), RBP Delta (OR, 1.168; 95% CI, 1.105-1.245), and RBP Theta (OR, 1.227; 95% CI, 1.135-1.342) emerged as independent risk factors. TND patients had significantly longer ICU stays (p < 0.001), and hospital stays (p = 0.002). We obtained the simplest predictive model for TND, consisting of three variables (CPB time ≥ 180 min, RBP Delta, RBP Theta, upon which we constructed column charts. The areas under the receiver operating characteristic (AUROC) were 0.821 (0.755, 0.887). Our study demonstrates that postoperative RBP monitoring can detect changes in brain function in patients with TAAD during the perioperative period, providing clinicians with an effective predictive method that can help improve postoperative TND in TAAD patients. These findings have important implications for improving clinical care in this population.Trial registration ChiCTR2200055980. Registered 30th Jan. 2022. This trial was registered before the first participant was enrolled.


Subject(s)
Aortic Dissection , Azides , Deoxyglucose/analogs & derivatives , Humans , Middle Aged , Prospective Studies , Aortic Dissection/surgery , Treatment Outcome , Risk Factors , Retrospective Studies , Postoperative Complications/etiology
9.
J Cardiothorac Surg ; 19(1): 138, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504265

ABSTRACT

BACKGROUND: Postoperative hyper-inflammation is a frequent event in patients with acute Stanford type A aortic dissection (ATAAD) after surgical repair. This study's objective was to determine which inflammatory biomarkers could be used to make a better formula for identifying postoperative hyper-inflammation, and which risk factors were associated with hyper-inflammation. METHODS: A total of 405 patients were enrolled in this study from October 1, 2020 to April 1, 2023. Of these patients, 124 exhibited poor outcomes. In order to investigate the optimal cut-off values for poor outcomes, logistic and receiver operating characteristic analyses were performed on the following parameters on the first postoperative day: procalcitonin (PCT), C-reactive protein (CRP), interleukin-6 (IL-6), and systemic immune-inflammation index (SII). These cut-off points were used to separate the patients into hyper-inflammatory (n = 52) and control (n = 353) groups. Finally, the logistic were used to find the risk factors of hyper-inflammatory. RESULTS: PCT, CRP, IL-6, and SII were independent risk factors of poor outcomes in the multivariate logistic model. Cut-off points of these biomarkers were 2.18 ng/ml, 49.76 mg/L, 301.88 pg/ml, 2509.96 × 109/L respectively. These points were used to define postoperative hyper-inflammation (OR 2.97, 95% CI 1.35-6.53, P < 0.01). Cardiopulmonary bypass (CPB) > 180 min, and deep hypothermia circulatory arrest (DHCA) > 40 min were the independent risk factors for hyper-inflammation. CONCLUSIONS: PCT > 2.18, CRP > 49.76, IL-6 > 301.88, and SII < 2509.96 could be used to define postoperative hyper-inflammation which increased mortality and morbidity in patients after ATAAD surgery. Based on these findings, we found that CPB > 180 min and DHCA > 40 min were separate risk factors for postoperative hyper-inflammation.


Subject(s)
Aortic Dissection , Interleukin-6 , Humans , Aortic Dissection/surgery , Inflammation , Biomarkers , Risk Factors , Procalcitonin , C-Reactive Protein , Retrospective Studies
10.
J Cardiothorac Surg ; 19(1): 140, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504314

ABSTRACT

BACKGROUND: Cox-Maze procedure is currently the gold standard treatment for atrial fibrillation (AF). However, data on the effectiveness of the Cox-Maze procedure after concomitant mitral valve surgery (MVS) are not well established. The aim of this study was to assess the safety and efficacy of Cox-Maze procedure versus no-maze procedure n in AF patients undergoing mitral valve surgery through a systematic review of the literature and meta-analysis. METHODS: A systematic search on PubMed/MEDLINE, EMBASE, and Cochrane Central Register of Clinical Trials (Cochrane Library, Issue 02, 2017) databases were performed using three databases from their inception to March 2023, identifying all relevant randomized controlled trials (RCTs) comparing Cox-Maze procedure versus no procedure in AF patients undergoing mitral valve surgery. Data were extracted and analyzed according to predefined clinical endpoints. RESULTS: Nine RCTs meeting the inclusion criteria were included in this systematic review with 663 patients in total (341 concomitant Cox-Maze with MVS and 322 MVS alone). Across all studies with included AF patients undergoing MV surgery, the concomitant Cox-Maze procedure was associated with significantly higher sinus rhythm rate at discharge, 6 months, and 12 months follow-up when compared with the no-Maze group. Results indicated that there was no significant difference between the Cox-Maze and no-Maze groups in terms of 1 year all-cause mortality, pacemaker implantation, stroke, and thromboembolism. CONCLUSIONS: Our systematic review suggested that RCTs have demonstrated the addition of the Cox-Maze procedure for AF leads to a significantly higher rate of sinus rhythm in mitral valve surgical patients, with no increase in the rates of mortality, pacemaker implantation, stroke, and thromboembolism.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Stroke , Thromboembolism , Humans , Atrial Fibrillation/complications , Mitral Valve/surgery , Maze Procedure , Treatment Outcome , Randomized Controlled Trials as Topic , Stroke/complications , Thromboembolism/complications , Catheter Ablation/methods
11.
JACC Case Rep ; 29(6): 102253, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38549853

ABSTRACT

We present a unique case of left atrial (LA) dissection in a 46-year-old man following aortic dissection surgery. The LA dissection was attributed to coronary sinus catheter-related injury. This report highlights the importance of recognizing this rare complication and the crucial role of transesophageal echocardiography in its diagnosis. We discuss the pathogenesis, diagnostic criteria, and management strategies for LA dissection.

12.
Biochem Pharmacol ; 223: 116170, 2024 May.
Article in English | MEDLINE | ID: mdl-38548245

ABSTRACT

BACKGROUND: Aortic Aneurysm and Dissection (AAD) are severe cardiovascular conditions with potentially lethal consequences such as aortic rupture. Existing studies suggest that liraglutide, a long-acting glucagon-like peptide receptor (GLP-1R) agonist, offers protective benefits across various cardiovascular diseases. However, the efficacy of liraglutide in mitigating AAD development is yet to be definitively elucidated. METHODS: Ang II (Angiotension II) infusion of APOE-/- mouse model with intraperitoneal injection of liraglutide (200 µg/kg) to study the role of GLP-1R in AAD formation. Bone Marrow Derived Macrophages (BMDM) and Raw264.7 were incubated with LPS, liraglutide, exendin 9-39 or LY294002 alone or in combination. SMC phenotype switching was examined in a macrophage and vascular smooth muscle cell (VSMC) co-culture system. An array of analytical methods, including Western Blot, Immunofluorescence Staining, Enzyme-LinkedImmunosorbent Assay, Real-Time Quantitative Polymerase Chain Reaction, RNA-seq, and so on were employed. RESULTS: Our investigation revealed a significant increase in M1 macrophage polarization and GLP-1R expression in aortas of AD patients and Ang II-induced AAD APOE-/- mice. Administering liraglutide in APOE-/- mice notably reduced Ang II-induced AAD incidence and mortality. It was found that liraglutide inhibits M1 macrophage polarization primarily via GLP-1R activation, and subsequently modulates vascular smooth muscle cell phenotypic switching was the primary mechanism. RNA-Seq and subsequent KEGG enrichment analysis identified CXCL3, regulated by the PI3K/AKT signaling pathway, as a key element in liraglutide's modulation of M1 macrophage polarization. CONCLUSION: Our study found liraglutide exhibits protective effects against AAD by modulating M1 macrophage polarization, suppressing CXCL3 expression through the PI3K/AKT signaling pathway. This makes it a promising therapeutic target for AAD, offering a new avenue in AAD management.


Subject(s)
Aortic Aneurysm , Aortic Dissection , Humans , Mice , Animals , Liraglutide/pharmacology , Liraglutide/therapeutic use , Angiotensin II/pharmacology , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , Aortic Dissection/chemically induced , Aortic Dissection/drug therapy , Aortic Dissection/prevention & control , Macrophages , Apolipoproteins E/genetics
13.
Sci Rep ; 14(1): 7086, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38528077

ABSTRACT

The destruction of the microvascular structure and function can seriously affect the survival and prognosis of patients with acute myocardial infarction (AMI). Nuciferine has a potentially beneficial effect in the treatment of cardiovascular disease, albeit its role in microvascular structure and function during AMI remains unclear. This study aimed to investigate the protective effect and the related mechanisms of nuciferine in microvascular injury during AMI. Cardiac functions and pathological examination were conducted in vivo to investigate the effect of nuciferine on AMI. The effect of nuciferine on permeability and adherens junctions in endothelial cells was evaluated in vitro, and the phosphorylation level of the PI3K/AKT pathway (in the presence or absence of PI3K inhibitors) was also analyzed. In vivo results indicated that nuciferine inhibited ischemia-induced cardiomyocyte damage and vascular leakage and improved cardiac function. In addition, the in vitro results revealed that nuciferine could effectively inhibit oxygen-glucose deprivation (OGD) stimulated breakdown of the structure and function of human coronary microvascular endothelial cells (HCMECs). Moreover, nuciferine could significantly increase the phosphorylation level of the PI3K/AKT pathway. Finally, the inhibitor wortmannin could reverse the protective effect of nuciferine on HCMECs. Nuciferine inhibited AMI-induced microvascular injury by regulating the PI3K/AKT pathway and protecting the endothelial barrier function in mice.


Subject(s)
Aporphines , Endothelial Cells , Myocardial Infarction , Animals , Humans , Mice , Apoptosis , Aporphines/pharmacology , Endothelial Cells/metabolism , Myocardial Infarction/pathology , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
14.
J Inflamm Res ; 17: 591-601, 2024.
Article in English | MEDLINE | ID: mdl-38318242

ABSTRACT

Background: Sivelestat, a neutrophil elastase inhibitor, is specifically developed to mitigate the occurrence of acute lung injury (ALI) in individuals who are undergoing cardiovascular surgery. However, its impact on patients who are at a heightened risk of developing ALI after scheduled cardiac surgery has yet to be determined. In order to address this knowledge gap, we undertook a study to assess the efficacy of sivelestat in protecting the lungs of these patients. Methods: We conducted a prospective cohort study involving 718 patients who were at high risk of developing postoperative acute lung injury (ALI) and underwent scheduled cardiac surgery between April 25th, 2022, and September 7th, 2023. Among them, 52 patients received sivelestat (administered at a dosage of 0.2mg/kg/h for 3 days), while 666 patients served as controls, not receiving sivelestat. The control conditions were the same for all patients, including ventilation strategy, extubating time, and fluid management. Subsequently, a propensity-score matched cohort was established, consisting of 40 patients in both the sivelestat and control groups. The primary outcome measure encompassed a composite of adverse outcomes, including 30-day mortality, ALI, acute respiratory distress syndrome (ARDS), and others. Secondary outcomes assessed included pneumonia, ventricular arrhythmias, mechanical ventilation (MV) time, and more. Results: After conducting propensity matching in our study, we observed that there were no significant differences in 30-day mortality between the sivelestat and control groups (0% vs 2.5%, P=0.32). However, the use of sivelestat exhibited a significant reduction in the incidence of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) compared to the control group (0% vs 55%, P<0.01), pneumonia (0 vs 37.5%, P<0.01), MV time (median:8 hours, IQR:4-14.8 hours vs median: 15.2 hours, IQR:14-16.3 hours, P<0.01). Compared to the control group, the sivelestat could significantly decrease white cell count (P<0.01), neutrophile percentage (P<0.01) and C-reactive protein (P<0.01) in the period of postoperative 5 days. Conclusion: The prophylactic administration of sivelestat has shown promising results in reducing the occurrence of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) in patients with a heightened risk of developing these conditions after elective cardiac surgery. Our study findings indicate that sivelestat may provide protective effects by suppressing inflammation triggered by neutrophil activation, thereby safeguarding pulmonary function. Registration: ChiCTR2200059102, https://www.chictr.org.cn/showproj.html?proj=166643.

15.
Circulation ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38357802

ABSTRACT

BACKGROUND: S-Nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in cardiovascular disease. Aortic aneurysm and dissection are high-risk cardiovascular diseases without an effective cure. The aim of this study was to determine the role of SNO of Septin2 in macrophages in aortic aneurysm and dissection. METHODS: Biotin-switch assay combined with liquid chromatography-tandem mass spectrometry was performed to identify the S-nitrosylated proteins in aortic tissue from both patients undergoing surgery for aortic dissection and Apoe-/- mice infused with angiotensin II. Angiotensin II-induced aortic aneurysm model and ß-aminopropionitrile-induced aortic aneurysm and dissection model were used to determine the role of SNO of Septin2 (SNO-Septin2) in aortic aneurysm and dissection development. RNA-sequencing analysis was performed to recapitulate possible changes in the transcriptome profile of SNO-Septin2 in macrophages in aortic aneurysm and dissection. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation were used to uncover the TIAM1-RAC1 (Ras-related C3 botulinum toxin substrate 1) axis as the downstream target of SNO-Septin2. Both R-Ketorolac and NSC23766 treatments were used to inhibit the TIAM1-RAC1 axis. RESULTS: Septin2 was identified S-nitrosylated at cysteine 111 (Cys111) in both aortic tissue from patients undergoing surgery for aortic dissection and Apoe-/- mice infused with Angiotensin II. SNO-Septin2 was demonstrated driving the development of aortic aneurysm and dissection. By RNA-sequencing, SNO-Septin2 in macrophages was demonstrated to exacerbate vascular inflammation and extracellular matrix degradation in aortic aneurysm. Next, TIAM1 (T lymphoma invasion and metastasis-inducing protein 1) was identified as a SNO-Septin2 target protein. Mechanistically, compared with unmodified Septin2, SNO-Septin2 reduced its interaction with TIAM1 and activated the TIAM1-RAC1 axis and consequent nuclear factor-κB signaling pathway, resulting in stronger inflammation and extracellular matrix degradation mediated by macrophages. Consistently, both R-Ketorolac and NSC23766 treatments protected against aortic aneurysm and dissection by inhibiting the TIAM1-RAC1 axis. CONCLUSIONS: SNO-Septin2 drives aortic aneurysm and dissection through coupling the TIAM1-RAC1 axis in macrophages and activating the nuclear factor-κB signaling pathway-dependent inflammation and extracellular matrix degradation. Pharmacological blockade of RAC1 by R-Ketorolac or NSC23766 may therefore represent a potential treatment against aortic aneurysm and dissection.

16.
J Cardiothorac Surg ; 19(1): 16, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254116

ABSTRACT

BACKGROUND: Delirium is a common postoperative complication among patients who undergo Stanford Type A aortic dissection (TAAD). It is associated with increased mortality, as well as other serious surgical outcomes. This study aimed to analyze the risk factors for delirium in TAAD patients. METHODS: Pubmed, Web of science, Embase, the Cochrane Library and CINAHL were searched by computer to collect literatures on risk factors for postoperative delirium (POD) after TAAD. The retrieval period was from the establishment of the database to September 2022. After literature screening, two reviewers independently assessed the quality of the included studies using the Newcastle-Ottawa Scale (NOS). Data were extracted according to standard protocols, and then meta-analysis was performed using Revman 5.3 software. RESULTS: A total of 9 articles, comprising 7 case-control studies and 2 cohort studies, were included in this analysis. The sample size consisted of 2035 patients. POD was associated with increased length of ICU stay (MD 3.24, 95% CI 0.18-6.31, p = 0.04) and length of hospital stay (MD 9.34, 95% CI 7.31-11.37, p < 0.0001) in TAAD patients. Various perioperative risk factors were identified, including age (MD 4.40, 95% CI 2.06-6.73, p = 0.0002), preoperative low hemoglobin levels (MD - 4.44, 95% CI - 7.67 to - 1.20, p = 0.007), body mass index (MD 0.92, 95% CI 0.22-1.63, p = 0.01), history of cardiac surgery (OR 3.06, 95% CI 1.20-7.83, p = 0.02), preoperative renal insufficiency (OR 2.50, 95% CI 1.04-6.04, p = 0.04), cardiopulmonary bypass (CPB) duration (MD 19.54, 95% CI 6.34-32.74, p = 0.004), surgery duration (MD 44.88, 95% CI 5.99-83.78, p = 0.02), mechanical ventilation time (SMD 1.14, 95% CI 0.34-1.94, p = 0.005), acute physiology and chronic health evaluation (APACHE II) score (MD 2.67, 95% CI 0.37-4.98, p = 0.02), postoperative renal insufficiency (OR 2.82, 95% CI 1.40-5.68, p = 0.004), electrolyte disturbance (OR 6.22, 95% CI 3.08-12.54, p < 0.0001) and hypoxemia (OR 3.56, 95% CI 1.70-7.44, p = 0.0007). CONCLUSIONS: POD can prolong ICU stay and hospital stay in TAAD patients. This study identified a number of risk factors for POD after TAAD, suggesting the possibility of early identification of high-risk patients using relevant data.


Subject(s)
Aortic Dissection , Emergence Delirium , Renal Insufficiency , Humans , Aortic Dissection/surgery , Risk Factors
17.
Transl Res ; 267: 54-66, 2024 May.
Article in English | MEDLINE | ID: mdl-38199433

ABSTRACT

Atrial cardiomyopathy (ACM) forms the substrate for atrial fibrillation (AF) and underlies the potential for atrial thrombus formation and subsequent stroke. However, generating stable animal models that accurately replicate the entire progression of atrial lesions, particularly the onset of AF, presents significant challenges. In the present study, we found that the isoform of CRE-binding protein modulator (CREM-IbΔC-X), which is involved in the regulation of cardiac development and atrial rhythm, was highly expressed in atrial biopsies from patients with AF. Building upon this finding, we employed CRISPR/Cas9 technology to create a mouse model with cardiac-specific overexpression of CREM-IbΔC-X (referred to as CS-CREM mice). This animal model effectively illustrated the development of ACM through electrophysiological and structural remodelings over time. Proteomics and Chip-qPCR analysis of atrial samples revealed significant upregulation of cell-matrix adhesion and extracellular matrix structural components, alongside significant downregulation of genes related to atrial functions in the CS-CREM mice. Furthermore, the corresponding responses to anti-arrhythmia drugs, i.e., amiodarone and propafenone, suggested that CS-CREM mice could serve as an ideal in vivo model for drug testing. Our study introduced a novel ACM model with spontaneous AF by cardiac-specifically overexpressing CREM-IbΔC-X in mice, providing valuable insights into the mechanisms and therapeutic targets of ACM.


Subject(s)
Atrial Fibrillation , Cardiomyopathies , Mice , Humans , Animals , CRISPR-Cas Systems/genetics , Mice, Transgenic , Heart Atria/pathology , Cardiomyopathies/genetics , Cyclic AMP Response Element Modulator/genetics , Cyclic AMP Response Element Modulator/metabolism
18.
Eur J Med Res ; 29(1): 10, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172972

ABSTRACT

BACKGROUND: Right-side aortic arch concomitant with Kommerell's diverticulum (KD) is a rare and complex ailment, and there is no consensus on the optimal strategy to deal with this congenital anomaly. We retrospectively analyzed and summary of the cases treated in our center with individual treatment methods for different situations. METHODS: Between September 2018 and December 2021, 10 patients experienced surgical therapy at our institution who presented with a Kommerell's diverticulum arising from an aberrant subclavian artery from the right-side aortic arch. Four main surgical techniques were applied to those patients: 1. total arch replacement with frozen elephant trunk implantation (n = 2); 2. hybrid procedure combining open arch repair and endovascular intervention (n = 1); 3. total endovascular repair using thoracic endovascular aortic repair (TEVAR) with or without left subclavian artery (LSCA) revascularization (n = 6); 4. direct repair underwent endoaneurysmorrhaphy. Clinical characteristics and outcomes were collected. RESULTS: The mean age of these 10 patients was 56.5 years (range 29-79 years) and only 1 woman. The pathology includes aortic dissection (n = 6) and aneurysm (n = 4). The mean diverticulum size was 41.4 [24.2-56.8] mm. There were no in-hospital deaths, and the median hospital stay was 22 [15-43] days. During the follow-up period (21.4 months, 1-44 months), one died of an unknown cause and one died of esophageal fistula. Two patients underwent second-stage endovascular intervention for distal lesion. And none of the patients had endoleak during the follow-up period. CONCLUSIONS: Each of the procedures we have mentioned here has its advantages and disadvantages; individualized treatment should meet the appropriate indications. A single-branched stent graft is feasible and effective in the treatment of aortic disease combined with Kommerell's diverticulum.


Subject(s)
Aneurysm , Diverticulum , Female , Humans , Adult , Middle Aged , Aged , Aorta, Thoracic/surgery , Aorta, Thoracic/abnormalities , Follow-Up Studies , Retrospective Studies , Aneurysm/complications , Aneurysm/surgery , Subclavian Artery/surgery , Subclavian Artery/abnormalities , Diverticulum/complications , Diverticulum/surgery
19.
Mol Med Rep ; 29(3)2024 03.
Article in English | MEDLINE | ID: mdl-38275127

ABSTRACT

Heart failure is a primary cause of global mortality. In the present study, whether larixyl acetate, an inhibitor of transient receptor potential cation channel subfamily C member 6, attenuates pressure overload­induced heart failure in mice was investigated. To test this hypothesis, a transverse aortic constriction (TAC) animal model and an angiotensin II (Ang II)­treated H9c2 cell model were used. Cardiac and cellular structure, function and the expression levels of hypertrophy, endoplasmic reticulum (ER) stress, apoptosis, autophagy and pmTOR/mTOR related mRNAs or proteins were assessed to explore the underlying molecular mechanisms. The results indicated that treatment with TAC or Ang II leads to significant hypertrophy and dysfunction of the heart or H9c2 cells, accompanied by an increase in ER stress, apoptosis and activation of the mTOR signaling pathway, and a decrease in autophagy. The administration of larixyl acetate attenuated these impairments, which can be reversed by inhibiting autophagy through the activation of the mTOR signaling pathway. These findings suggested that larixyl acetate can effectively protect against pressure overload­induced heart failure by enhancing autophagy and limiting ER stress and apoptosis through inhibition of the mTOR pathway.


Subject(s)
Acetates , Aortic Valve Stenosis , Heart Failure , Naphthalenes , Mice , Animals , TRPC6 Cation Channel , Myocytes, Cardiac/metabolism , Heart Failure/drug therapy , Heart Failure/etiology , Heart Failure/metabolism , TOR Serine-Threonine Kinases/metabolism , Autophagy , Aortic Valve Stenosis/metabolism , Hypertrophy/metabolism , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Apoptosis
20.
Environ Toxicol ; 39(3): 1682-1699, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38041472

ABSTRACT

This study aims to explore the roles of phenylacetyl glutamine (PAGln) on myocardial infarction (MI) pathogenesis. Here, using targeted metabolomics analysis, it was found that the plasma metabolite PAGln was upregulated in coronary artery disease (CAD) patients and MI mice and could be an independent risk factor for CAD. In vivo and in vitro functional experiments revealed that PAGln pretreatment enhanced MI-induced myocardial injury and cardiac fibrosis, as evident by the increased infarct size, cardiomyocyte death, and the upregulated expression of cardiac fibrosis markers (Col1a1 and α-SMA). Combined with RNA-sequencing analysis and G protein-coupled receptor (GPCR) inhibitor, we found that the GPCR signaling activation is essential for PAGln-mediated effects on cardiomyocyte death. Furthermore, drug affinity responsive target stability and cellular thermal shift assay demonstrated that PAGln could interact with ß1-adrenergic receptor (AR). Moreover, ß1-AR blocker treatment indeed extended the cardiac remodeling after PAGln-enhanced MI. These results suggest that PAGln might be a potential therapeutic target for extending the cardiac remodeling window in MI patients that signals via ß1-AR.


Subject(s)
Myocardial Infarction , Myocytes, Cardiac , Humans , Mice , Animals , Myocytes, Cardiac/metabolism , Glutamine/metabolism , Glutamine/therapeutic use , Ventricular Remodeling , Myocardial Infarction/drug therapy , Fibrosis , Receptors, Adrenergic/metabolism , Receptors, Adrenergic/therapeutic use , Myocardium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...